Vizea île de France
Vizea Sud-Est
Vizea Grand-Ouest
Vizea Sud-Ouest

4,9 millions d'hectares d’espaces agricoles et naturels étaient artificialisés en 2010 en France, soit près de 9 % du territoire de la métropole. L’augmentation de la population et l’évolution de notre mode de vie participent à l’étalement urbain des villes sur le territoire. C’est dans ce contexte que le Commissariat général au développement durable a recueilli 15 contributions d’experts, afin de donner quelques clés de compréhension de ce processus et des pistes pour agir contre l’étalement urbain…
La population française a augmenté de près de 40 % sur les 50 dernières années. Couplé à une diminution de la taille moyenne des ménages alors que la surface habitable par logements a été multipliée par 2,3 de 1968 à 2007 (selon l’INSEE) ; notre mode de vie impacte de manière quasi-irréversible les terrains agricoles, forestiers ou semi-naturels périurbains.
A cela s’ajoute l’éloignement des centres-villes : la distance domicile/travail est de 30 km pour les actifs habitant en couronne périurbaine de l’une des sept plus grandes aires urbaines de province, contre 19 km pour les habitants de la ville-centre. L’augmentation des distances domicile/travail favorise aussi l’usage de la voiture et la pollution de l’air, avec des émissions de CO2 multipliées par environ 2,5 entre un habitant de la ville-centre d’une grande aire urbaine et un habitant d’une commune périphérique.
Selon l’UE-SOeS, Corine Land Cover - outil d’observation de l’état de l’occupation des sols - , l’artificialisation des sols a augmenté de 3 % en France métropolitaine entre 2000 et 2006 et les surfaces urbanisées de 2,1 %, tandis que la population a progressé de 4,4 %. Des zones résidentielles (+1,6 %), industrielles et commerciales (+6,8%) mais aussi des infrastructures routières (+16,7%) prennent progressivement le pas sur les espaces agricoles (88%) ou naturels (12%).
L’artificialisation des sols concernent aussi des terrains exposés au risque d’inondation, menant à 7,5 % la part des zones urbanisées concernées par ce risque.
En réponse à ce contexte, le cadre réglementaire a vu accroitre ses objectifs d’économie du foncier, comme les lois Grenelle ou la loi de modernisation de l’agriculture et de la pêche du 13 juillet 2010 qui renforcent le rôle des documents d’urbanisme et plans mis en œuvre (plan « Nature en Ville », plan « Ville durable »…).
Les schémas de cohérence territoriale (ScOT) et plans locaux d'urbanisme (PLU) intégreront ainsi dans leurs rapports de présentation une analyse de la consommation d'espaces naturels, agricoles et forestiers pendant les dix dernières années et devront effectuer un suivi régulier de ces consommations par des indicateurs.
Afin d’encadrer le phénomène d’étalement urbain, le Centre d’études sur les réseaux, les transports, l’urbanisme et les constructions publiques (Certu) en liaison avec le réseau des Centres d’études techniques de l’équipement (Cete) a établi récemment une grille d’indicateurs territoriaux de suivi de la consommation d’espace.
Un faisceau de 82 indicateurs est issu de cette réflexion. Dix d’entre eux, permettant une première approche de synthèse territoriale, sont mis en avant par le groupe de travail :
Confronté à la difficulté de quantifier et de qualifier un phénomène complexe tel que l’expansion de l’urbanisation, cette étude déjà très riche sera complétée par d'autres travaux (menés par le Certu) en rapport avec le thème de la consommation d'espace.
De manière plus générale, il apparait que l’étalement urbain ne s’observe pas qu’en France mais dans tous les pays développés, où les ménages, guidés par les coûts du foncier ou de transports cherchent de plus en plus à atteindre un bien être personnel dans la localisation de leur résidence. Ainsi, afin de limiter les coûts sociaux qu’elle engendre, la problématique de l’étalement urbain, que l’Agence européenne de l’environnement considère comme « un des défi collectif majeur de l’Europe », doit être traitée à plus grande échelle.
Après une première campagne menée en 2011, l’Association HQE a lancé l’édition 2012 du test HQE performance qui a pour vocation d’évaluer la performance environnementale des bâtiments sur la base d’indicateurs « normés » en s’appuyant notamment sur l’analyse du cycle de vie (ACV).
Cette deuxième édition reste centrée sur les bâtiments neufs, résidentiels ou tertiaires. Elle doit permettre notamment d’affiner les valeurs de référence (pour construire des échelles de performance) et de dégager les facteurs influençant la performance environnementale pour construire un référentiel opérationnel.
Toute opération de construction de niveau BBC (ou RT 2012), tertiaire ou résidentiel, certifiée (ou en cours de certification) NF, NF HQE, H&E ou lauréat Prébat peut être candidat à l’expérimentation. Chaque acteur de l’opération (architecte, BET, entreprise …) peut se présenter avec l’accord du Maitre d’ouvrage à cette expérimentation.
Les formulaires de déclaration de participation sont disponibles sur le site de l’association HQE. Le calendrier de l’expérimentation est le suivant :
• 10/06 : Date limite de dépôt de la déclaration de participation
• 14/06 : Réunion d’information pour les participants au test,
• 15/10 : Date limite de remise du dossier « Test HQE Performance »,
• Novembre 2012 : Réunion de retour d’expérience avec les participants,
• Mars 2013 : Retour privilégié d’information aux participants sur la capitalisation des tests.
Retrouvez la plaquette de l’appel à projet.
A l’heure des crises économiques, l’importance de la prise en compte des problématiques sociales dans les politiques locales est essentielle. 
Le 11 avril dernier, le coup d’envoi de l’opération IssyGrid a été lancé à Issy-les-Moulineaux. Il s’agit d’une opération pilote d’envergure de smart-grid qui vise à optimiser la gestion de l’énergie à l’échelle du quartier par un rééquilibrage dynamique entre l’offre et la demande. L’enjeu est de lisser les pics de consommation et d’intégrer de manière effective les énergies renouvelables intermittentes grâce à un système de monitoring intelligent. La mixité d’usage entre logements et tertiaires à l’échelle du quartier est une dimension importante, car les pics de consommation ne sont pas les mêmes selon la typologie de bâtiments
L’opération qui vient de rentrer dans sa phase opérationnelle, concerne pour l’instant quelques bâtiments test (résidentiels et tertiaires), avant d’être progressivement étendue au quartier d’affaires Seine Ouest puis au quartier résidentiel Ford d’Issy.
Dans le secteur résidentiel, les premiers logements tests ont été équipés de :
Les informations récoltées sont transmises, anonymement et en temps réel via internet, vers le système d'information énergétique central, la VIGIE, en vue d'une optimisation des flux à l'échelle du quartier.
Concernant le secteur tertiaire, une interface logicielle collecte les consommations d'énergie par postes : éclairage, informatique et télécommunications, chauffage, ventilation, climatisation, eau chaude, parkings, ascenseurs et recharge des véhicules électriques. Ces mesures sont ensuite rapprochées des critères règlementaires fixés par la RT 2012.
L'outil de monitoring intelligent de réseau collecte et agrège en temps réel les informations relatives à la consommation, au stockage et à la production locale d'énergie photovoltaïque. L’objectif est en deux temps. Tout d’abord, connaitre la consommation précise du quartier, par postes et par typologie de bâtiments. Ensuite, l’enjeu est de développer un dispositif de pilotage du bâtiment qui contribuera au lissage des pics de consommation.
Par exemple : en cas de pic, le réseau pourra envoyer un SMS à certains habitants pour leur proposer d'éteindre leur chauffage quelques minutes ou d’éteindre leurs appareils en veille (réalisable à distance, via une application sur Smartphone). Le réseau pourra également indiquer à quelle heure il est plus avantageux de recharger les véhicules électriques. L’énergie produite pendant la semaine par un immeuble de bureaux, équipé de panneaux solaires, pourra aussi être redirigée vers le quartier résidentiel le week-end.
Actuellement 300 m² de panneaux de photovoltaïques sont installés. A moyen terme, 1000 m² sont prévus sur 3 bâtiments différents. Ils permettent une grande flexibilité d’utilisation : à l’échelle du bâtiment producteur d’une part (auto-consommation et stockage local), et à l’échelle du quartier dans son ensemble d’autre part (injection dans le réseau de distribution et stockage centralisé).
La clé de leur intégration harmonieuse au réseau repose sur un pilotage intelligent de la production grâce à :
Un enjeu majeur est le stockage de l’énergie produite pendant les heures creuses sur les batteries des voitures électriques, et d’avoir la possibilité de récupérer cette énergie lors de périodes de forte demande énergétique.En outre, le fonctionnement des bornes de rechargement sera intégré au réseau de monitoring intelligent. Le client pourra choisir un mode de recharge adapté à l’usage (normal ou rapide) ou programmer ses déplacements en fonction du coût de la recharge.
Le projet IssyGrid a été à l’initiative d’un groupe d’entreprises issues des trois domaines au cœur des smart-grid : l’infrastructure urbaine, l’énergie et les TIC (technologies de l’information et de la communication). Des dizaines d’entreprises – de grands groupes internationaux aux start-up – ont collaboré sur ce projet pilote avec la ville d’Issy-les-Moulineaux. Les quartiers retenus pour l’opération n’ont pas été choisis par hasard : la plupart des entreprises partenaires possèdent des bureaux dans le quartier Seine Ouest qui seront parmi les premiers bâtiments tests, et le quartier de Fort d’Issy regroupe une grande partie des salariés des entreprises partenaires, parmi lesquels ont été « recrutés » les premiers logements tests.
Le lancement d’IssyGrid se fera en plusieurs étapes :
A l’échelle nationale, un autre projet pilote de smart-community est en cours à Lyon dans le quartier de la Confluence, en partenariat avec le NEDO (New Energy and industrial technology Development Organization, agence publique japonaise équivalent de l’ADEME). La mise en œuvre doit s’étaler sur la période 2012-2015. Les retours d’expérience de tels projets seront précieux pour le développement de smart grid à une plus grande échelle.
ervatoire national des agendas 21 locaux » relève un certains nombre de qualités qui font le succès des démarches menées. L’un de ces points forts est la mise en avant de nouveaux thèmes dans la démarche, allant au-delà de la vision technique du développement durable (culture, écologie urbaine, relocalisation de l’économie,…). Le travail de prospective et la pugnacité des acteurs, s’appuyant sur des réseaux existants, sont également présentés comme des éléments nécessaires au succès de la démarche.
La densité énergétique, exprimée en MWh/ml, représente la consommation d’énergie totale répartie sur la longueur du réseau. Plus les besoins sont dispersés, plus la densité énergétique sera faible. Plus la densité est élevée, plus l’installation d’un réseau de chaleur est rentable. C’est pour cette raison que les raisons réseaux de chaleur se trouvent en ville en non en campagne, et en priorité pour des immeubles plutôt que des zones pavillonnaires.
La mixité des usages, sans unité, exprime la répartition des besoins, et donc des pics de consommation, dans le temps. Lorsque tous les bâtiments alimentés par le réseau ont la même fonction, les besoins sont simultanés: les pics unitaires de chacun des bâtiments s’ajoutent. Dans ce cas, la mixité des usages est faible, ce qui entraine un sur dimensionnement du réseau pour répondre à cette demande de pointe. Au contraire, lorsque la mixité des usages est variée, les bâtiments desservis ont des besoins répartis dans le temps, les pics unitaires ne sont pas synchronisés, la consommation est quasiment constante, permettant un fonctionnement optimal.
L’augmentation des exigences imposées par la réglementation thermique conduit à des bâtiments plus performants avec des besoins de chaud et de froid plus faibles. De ce fait, la pertinence économique des réseaux de chaleur n’est plus toujours aussi évidente. Cela est particulièrement vrai dans le cas des démarches d’éco-quartiers, de plus en plus nombreuses, et qui passent la plupart du temps par une sobriété énergétique au-delà de la réglementation. Cela entraine des densités énergétiques plus faibles qu’auparavant, transférant donc les nouvelles problématiques sur les pertes en ligne et la mixité énergétique des usages.
Après avoir proposé une trame d'étude réglementaire, c’est pour répondre à ces questionnements que Centre d’Etudes Techniques de l’Equipement (CETE) de l’Ouest a réalisé une étude sur la place des réseaux de chaleur dans les nouveaux quartiers. Cette étude se base sur un outil permettant, à partir de données d’entrée sur le quartier, le réseau et les systèmes énergétiques de réaliser des études simplifiées pour estimer les consommations. La vocation première de cet outil est de servir de support pour la réflexion des grandes orientations de l’aménagement.
A partir de cet outil, plusieurs études de cas ont été menées permettant d’observer les différents résultats en fonction des variations de densité et de mixité. Notamment, le positionnement en termes de performances du réseau de chaleur par rapport à un ensemble de systèmes décentralisés permettant de répondre aux mêmes besoins.
Pour étudier les impacts de la variation de la densité énergétique, 3 cas ont été comparés : la référence, un cas où la densité est diminuée de 30 % et un cas où elle est augmentée de 30%.La première observation est que la baisse de consommation d’énergie finale du réseau, lorsque la densité diminue, est moins importante que l’augmentation de consommation, lorsque la densité augmente.
En effet, une baisse de densité de 30 % entraine une variation de consommation d’énergie finale de -25,8 %, alors qu’une hausse de 30 % de la densité conduit à une variation de la consommation de + 27 %. La variation de consommation d’énergie finale n’est donc pas reliée linéairement à la densité énergétique.
Cette observation vaut également pour l’énergie primaire puisque le facteur énergie primaire / énergie finale reste constant.
Cette même variation amène à une seconde conclusion intéressante. Dans les 3 cas étudiés, la consommation d’énergie finale est plus faible pour les systèmes décentralisés que pour le réseau de chaleur. Cependant, l’écart qui existe entre les 2 moyens de chauffage varie significativement avec la densité énergétique. En effet, dans le cas de référence, l’écart de consommation d’énergie finale est de 10,4 %, une diminution de la densité de 30 % porte cet écart à 15,2 %. La baisse de la densité énergétique dans les nouveaux quartiers est donc préjudiciable aux réseaux de chaleur de ce point de vue.
Au contraire, une augmentation de la densité énergétique réduit l’écart de consommation d’énergie primaire entre les deux modes de production pour que celui n’atteigne plus que 8,5 %. A titre d’illustration complémentaire, le doublement de la densité énergétique par rapport à la référence amène cet écart à 7,6 %.
Toujours en analysant les effets d’une variation de la densité énergétique, la baisse de la densité de 30 % est également dommageable pour les réseaux en termes de rendement. En effet, la réduction de 30 % conduit à une chute du rendement de 4 points, alors que la hausse de densité n’entraine une augmentation que de 2 points. Cela est une conséquence directe du phénomène observé sur la variation de consommation d’énergie finale.
Une fois les effets de la variation de la densité énergétique étudiés, ce sont ceux de la mixité d’usage qui sont analysés. Dans le cas où la mixité est plus faible que la référence, la consommation d’énergie finale pour un réseau de chaleur augmente très significativement par rapport à celle des systèmes décentralisés.
En effet, le fait que les pics de consommations ne soient plus répartis de manière dispersée mais concentrés sur les mêmes tranches horaires entraine un sur-dimensionnement du réseau, et donc un fonctionnement qui est la plupart du temps en sous charge. Pour les systèmes décentralisés, le pic ne varie pas dans l’absolu, le dimensionnement n’entraine donc aucun dysfonctionnement par la suite. La conséquence directe de cette observation est la baisse très significative du rendement du réseau qui est quasiment divisé par 4 !
Par ailleurs, une mixité d'usage importante n'améliore pas systématiquement les performances du réseau de chaleur mais contribue tout de même à rendre compétitif un réseau vis-à-vis d'un ensemble de systèmes décentralisés.
La mise en place de réseaux de chaleur basse température, consiste tout simplement à faire circuler dans les réseaux de chaleur une eau à 70 °C environ, au lieu des 110 °C traditionnellement observés. La basse température est notamment étudiée pour réduire les déperditions de chaleur. En effet, les échanges thermiques entre le réseau et son milieu environnant sont d’autant plus importants que l’écart de température entre les deux est grand. En limitant cet écart de température, les échanges se retrouvent forcément diminués.
En plus de cette baisse de température, un effort sur l’isolation des réseaux doit être réalisé, permettant de conserver au maximum des températures suffisantes pour répondre aux exigences sanitaires.
Ces mesures permettent d’après l’étude de diminuer les déperditions sur l’ensemble du réseau de plus de 50 %, augmentant du même coup le rendement global de 4 points.
L’implantation d’EnR dans le mix énergétique d’un réseau est en effet beaucoup plus facile que dans un système décentralisé classique où les parts de l’électricité et du gaz sont encore très présentes. L’impact sur le changement climatique, même lorsque les consommations d’énergie finale sont légèrement plus importantes dans le cas d’un réseau de chaleur, reste très largement supérieur pour un ensemble de systèmes décentralisés. Certes, avec l’augmentation des chaudières individuelles alimentées au bois, cet écart tend à se réduire. A titre d’exemple, l’écart d’émissions de GES entre une chaudière bois (avec appoint gaz) et un ensemble de systèmes décentralisés ayant pour source du gaz et de l’électricité, est de 350 %.
Par ailleurs, un avantage non négligeable reste le coût, qui est plus faible pour un réseau que pour un ensemble de systèmes décentralisés. En effet, la mutualisation des moyens (une seule chaudière comparée à une unité par logement) et de l’entretien sont autant d’arguments qui pèsent en faveur du réseau sur ce point.
Grâce au décret n°2012-518 du 19 avril 2012 relatif au label « bâtiment biosourcé », actif dès le lendemain de sa parution, des matériaux d’origine végétale ou animale peuvent être utilisés lors de la construction de bâtiments et notamment dans le cas d’isolants. Ces matériaux sont communément qualifiés de «biomatériaux» ou de matériaux «biosourcés» : il s’agit notamment du bois et de ses dérivés, du chanvre, de la paille, de la plume ou de la laine de mouton. Ils présentent deux atouts principaux sur le plan de l’environnement : Le 19 avril 2012, le BRGM, l’INERIS et le Ministère de l’Ecologie, du Développement Durable, des Transports et du Logement ont publié une étude commune traitant de la réutilisation hors site des terres excavées en technique routière et dans des projets d’aménagement
Les chantiers sur sites pollués génèrent souvent l’excavation d’importantes quantités de terres polluées, ne pouvant être gérées sur site. Ces terres excavées sont alors évacuées hors du site, prenant le statut de déchets. Ce guide expose les règles de l’art et les modalités sous lesquelles certaines de ces terres peuvent être réutilisées dans le cadre de projets de réhabilitation, en technique routière et dans des projets d’aménagement (aménagements industriels ou de bureaux et aménagements paysagers non privatifs). Il précise, pour chaque usage, des caractéristiques de sol à respecter pour s’inscrire dans une démarche de développement durable et de protection des populations et de l’environnement. Le guide est applicable à titre provisoire pendant 1 an et sera revu si nécessaire après 1 an d’application en fonction des retours d’expérience.
La démarche définie ne s’applique qu’aux sites engagés dans une démarche de gestion des sites et sols (potentiellement) pollués, tels que définis dans la Note Ministérielle du 8 février 2007. De nombreuses exceptions sont cependant définies pour les terres ne répondant pas à l’objectif de protection des populations et de l’environnement : par exemple, les terres qui relèvent de la catégorie des déchets dangereux au sens de l’article R.541-8 du Code de l’Environnement, … La démarche proposée ne va donc globalement concerner que les terres peu polluées et par des substances peu dangereuses.
Pour favoriser la réutilisation de ces terres excavées, une base de données a été créée : la base TERRASS. Elle vise à mettre en relation les producteurs et les receveurs de terres tout en assurant leur suivi.Le producteur va ainsi engager la réalisation d’une prestation LEVE pour savoir si son site relève ou non de la méthodologique nationale des sites pollués. Une fois cette levée des doutes réalisée, les terres excavées sont caractérisées pour s’assurer de leur compatibilité avec le milieu dans lequel elles seront réutilisées.
Le producteur est ensuite chargé de trouver une filière d’élimination des terres, de transmettre au receveur les informations liées aux caractéristiques de ces terres, d’initier la procédure de traçabilité des terres excavées (via le BSTR) et de s’assurer que les terres ont bien été valorisées.
Le receveur de son côté doit vérifier que les caractéristiques des terres excavées reçues sont bien compatibles avec les usages futurs qu’il prévoit, vérifier que les modalités de gestion des terres sont conformes aux modalités du guide, finaliser la procédure de traçabilité des terres excavées (via le BSTR) et valoriser les terres conformément au projet.
Ce guide prévoit la réutilisation des terres excavées pour les usages suivants :
On peut regretter le peu de nouveautés apportées par ce guide en termes d’usages des terres excavées. Il offre cependant une démarche cadrée avec la création d’un Bordereau de Suivi des Terres Réutilisables (BSTR) et d’un outil de mise en relation des acteurs concernés. Retrouvez l'étude intégrale.


Page 31 sur 51
